

yehua - Let you focus on code, instead of setup scaffolding

	Author

	
	
	

	Source code

	http://github.com/moremoban/yehua.git

	Issues

	http://github.com/moremoban/yehua/issues

	License

	New BSD License

	Released

	0.1.4

	Generated

	Oct 17, 2020

[image: _images/yehua.svg]
 [http://travis-ci.org/moremoban/yehua][image: _images/coverage.png]
 [https://codecov.io/github/moremoban/yehua][image: _images/yehua1.svg]
 [https://pypi.org/project/yehua][image: _images/month.svg]
 [https://pepy.tech/project/yehua/month][image: _images/yehua2.svg]
 [https://github.com/moremoban/yehua/stargazers][image: _images/v1.svg]
 [https://moban.readthedocs.io/en/latest/#at-scale-continous-templating-for-open-source-projects][image: _images/v11.svg]
 [https://github.com/psf/black][image: _images/patreon.png]
 [https://www.patreon.com/chfw][image: Join the chat at https://gitter.im/chfw_yehua/Lobby]
 [https://gitter.im/chfw_yehua/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]
Introduction

[image: _images/yehua-usage.gif]
yehua /’jɛhwa/ is yet another a project template tool for an organisation. It creates a project skeleton, S
from the default project template, T, of an organisation. moban [https://github.com/moremoban/moban], the other
tool of moremoban organisation, keeps S in synchronisation with T forever. This
use case is what we called: continuous templating.

[image: _images/yehua-story.png]

Cookiecutter users

Yes, we now support cookiecutter templates. It has been requested since 2018
Europython. Simply there is tons of cookiecutter templates out there.

[image: _images/yehua-cookiecutter.gif]
What you do is to replace ‘cookiecutter’ with ‘yh’:

$ pip install yehua[cookiecutter]
$ yh gh:audreyr/cookiecutter-pypackage

And what moremoban promise is, whenever your source template changes, you
can synchronize them any time with another moremoban’s command ‘moban’:

$ moban

Yes, you need a separate command, which replaces your effort to synchronize
the upstream templates all the time.

What’s different with Yehua

When the scope is a single project, yehua is no different to cookiecutter [https://github.com/cookiecutter/cookiecutter] and
PyScaffold [https://github.com/pyscaffold/pyscaffold]. It will create a project skeleton from pypi-mobans [https://github.com/moremobans/pypi-mobans], other templates such
as cookiecutter templates, yehua mobans.

When the scope is all projects within an organisation, yehua helps tackle
information fragmentation problem, because all new projects after its creation,
are still in synchronisation with T. For example, removing python 2.7 test
in your travis file, can be done either manually by hand or automatically via
moban [https://github.com/moremoban/moban]. What’s the difference? The latter is faster and typo-free option. Here is
an example [https://github.com/moremoban/yehua/blob/dev/.github/workflows/moban-update.yml].

PyScaffold [https://github.com/pyscaffold/pyscaffold] version 3 has rolled out ‘–update’ option, recognizing the organisational
need of continous templating. Why do not yehua join PyScaffold [https://github.com/pyscaffold/pyscaffold]? Well,
moremoban organisation started with ‘–update’ at the start so our architecture
and vision are closer to that of cookiecutter [https://github.com/cookiecutter/cookiecutter]:

	we do not want to limit ourselves in pythonsphere. We wanted to serve all
IT projects. In our mind, they are all about text templating.

	we split the tool and the templates, serving the previous statement.
People can create npm package template and use yehua+moban for continuous templating.
Here are a list of examples:

	pypkg-mobans in pyecharts project [https://github.com/pyecharts/pypkg-mobans]

	echarts-js-mobans in echarts-map project [https://github.com/echarts-maps/echarts-js-mobans]

Installation

You can install yehua via pip:

$ pip install yehua

or clone it and install it:

$ git clone https://github.com/moremoban/yehua.git
$ cd yehua
$ python setup.py install

Usage

Simply type in and you are taken care of:

$ yh

It will use pypi-mobans-pkg by default and if it is not installed, it will
install latest one. Then pypi-mobans-pkg takes over and will do
[these](https://github.com/moremoban/pypi-mobans/blob/dev/yehua.yml)
for you:

	Consult you on your project static information which can update as
many as you want to.

	Create the Python package folder structure

	Initialize the package as git project

You will simply need to commit it after you will have reviewed the
generated files.

Tutorial

Let’s make a python command line utility using yehua. The command
will be hello and it prints world.

Step 1 Let’s launch yehua

[image: slide1]

Step 2 Fill-in the meta data for your project

[image: slide2]

At the end, yehua generates a folder named ‘hello’, which contains [all necessary
files](https://github.com/moremoban/pypi-mobans).

Step 3 Start coding

[image: _images/yehua-hello.gif]
In above animation, we write up the actual code in hello/main.py

def main():
 print('world')

Why is it enough? yehua generates a command utility python and
it has pre-wired to invoke hello.main.main() function. You
can find it out in setup.py.

Step 4 Install it

Now all is done. Let’s install it

[image: slide7]

You can now run hello at your command line.

Step 5 push to github

Suppose you are happy with everything. Please do the following to
push it to your github:

$ git commit -am ":sparkle: initial commit"

Then create your project repository in github and do these to push it out:

$ git remote add origin https://github.com/moremoban/hello.git
$ git push origin master

You can find the hello project [https://github.com/moremoban/hello] on github.

Step 7 enable travis

The generated project already has .travis.yml file. What you
will need to do is to register with travis.org if you have not
done so. And then go to travis and activate your project.

Background

The original problem I was trying to solve is: I would like to place
common paragraphs in the documentation of my projects in a central
place (pyexcel-mobans), and all projects could reference it dynamically
so that when those common paragraphs get updated, the updates can be
easily propagated to all relevant projects. The derived problem is:
what can I do to a new project? I found myself doing a lot of
copy-and-paste a lot, which lead to the creation of “yehua”. Later,
John Vandenberg, an active member of coala, suggested extracting the
generic sets of pyexcel-mobans to form pypi-mobans, so that
a vanilla python package can be created. Why not cookiecutter?
Well, I have not heard of it at the time of creation. But it turns out
that this project started to pave the way to be the cookiecutter
for organisations.

Why to choose “yehua”? Here is the little story [https://github.com/moremoban/yehua/issues/5#issuecomment-317218010] behind the
choice of name. And this music video [https://www.youtube.com/watch?v=_JFTOQ6F1-M&frags=pl%2Cwn] would help bridge the
cultural gap between you and me.

Documentation

	Default use case: scaffolding a python package
	Default yehua.yml file
	configuration section

	user question section

	layout section

	templates section

	static section

	Template files

	Static files

	After all actions

	Custom use case: scaffolding a npm package
	Evaluation

	yehua.yml for npm package
	configuration section

	user questions section

	templates section

	static section

	Enterprise use case: scaffolding all projects in your organisation

License

NEW BSD License

Default use case: scaffolding a python package

yehua reads a configuration file named yehua.yml which then instruct **yehua
to ask questions to collect project specific variables, and create the file
structures.

It takes a yehua file from command line option, or YEHUA_FILE in the environment
variable. If none is found, it resorts to the default yehua.yml file included
in the package. And the default yehua.yml create a blank python package.

Default yehua.yml file

Let us go through the default yehua file. And then talk about the customization
in the next chapter

configuration section

yehua expects two set of files: templates and static files. configuration
section tells where they are relative to yehua.yml file.

In the default use case, the templates are located in yehua/resources/templates
and the static files are located in yehua/resources/static.

The files in the static folder will not be templated and will be copied across.

As a rule of thumb, if your file needs user input, please place it in templates
folder. Otherwise, please place your files in static folder, which is copied
across.

user question section

yehua will then ask a list of questions. The quoted lines are prompted to
the end user and the answers are given to the variable names on the left hand
side of semi-colon. Here is a simple format:

- holding_variable_name_for_the_answer: "What is most intuitive question for the variable?"

Then “holding_variable_name_for_the_answer” can be used in your template files.

layout section

layout section outlines the folder structure of the resulting project folder.
yehua will create the folder layout before generating any outputs.

In this case, a default python package will have tests, docs and .moban.d at
its first level. yehua would always create a sub folder named after
project_name.

templates section

The files in this section follows this spec:

	templated_target_file: template.file.in.templates.folder

As you can see, yehua would expand project_name for you.

static section

File in this section is simply copied over. Here is the spec:

- relative_file_path: relative_static_file_path_in_static_folder

Template files

Let’s examine the beginning of project.yml in templates folder.

	project_name

	organisation

	author

	contact

	company

are unknown to yehua and only the user knows the answer. Hence, it brings
us to the next section: user questions

Static files

The static files in yehua/resources/static are copied over by yehua according to
the instruction file.

After all actions

The possible extra actions is git-repo-files where you can name the files
to be added to a git repo. Here is a list of default files to be added to
the file repo:

Custom use case: scaffolding a npm package

As mentioned in previous section, yehua would take a yehua.yml from command
line options. This section walk you through creating a npm package, non-python
package.

If you are familiar with npm, you can try and compare with yehua:

$ npm init

Evaluation

Please first checkout yehua repository so that you will have the access to
example directory. Then make sure you have yehua installed.

[image: _images/yehua-npm-usage.gif]

yehua.yml for npm package

Let us go through the variant yehua file.

configuration section

configuration:
 template_path: .
 static_path: .
questions:

the current directory where yehua.yml file is, is configured as the folder for
templates and static files.

user questions section

questions:
 - project_name: "name:"
 - version: "version:"
 - description: "description:"
 - entry_point: "entry point:"
 - test_command: "test command:"
 - git_repo: "git repository:"
 - keywords: "keywords:"
 - author: "author:"
 - license: "license:"

the questions here are prompted to collect user inputs.

templates section

templates:
 - package.json: package.json.jj2

Now the variables are used in template package.json.jj2 into package.json.

static section

static:
 - index.js: index.js

Now, yehua simply copies index.js to target package folder.

Enterprise use case: scaffolding all projects in your organisation

Previous example shows that you can write up your own yehua.yml and supporting
templates and static files and yehua creates the scaffolding for you.

Now in an enterprise context, you as the team lead or the architect would like
to propagate the best practices to all new projects. What you can do is to
make the yehua.yml and its files into repository. And then you could set:

$ export YEHUA_FILE=/location/to/the/cloned/yehua/repo/yehua.yml

Since then, yehua would always use that yehua file for scaffolding.

if you want to try it now, you could do this:

$ export YEHUA_FILE=/location/to/yehua/repo/examples/npm-init/yehua.yml
$ yehua

Index

Example yehua file

Here is the sample startup file:

configuration:
 - template_path: ./relative_path_to_this_file
 - static_path: ./relative_path_to_this_file
questions:
 - simple_keyword: "Simple Question?"
 - complex_question:
 - question: "The actual question?"
 "1. Answser":
 - follow_up_keyword: "Follow up question?"
 "2. Answer": "N/A"
mobans:
 - 'mobans': 'this is optional'
layout:
 - tests
 - docs:
 - source
 - .moban.d:
 - tests
 - docs:
 - source
templates:
 - "{{project_name}}.yml": project.yml
 - .moban.yml: .moban.yml
static:
 - ".moban.d/README.rst": "README.rst"
 - "{{project_src}}/__init__.py": __init__.py.jj2
post-moban:
 git-repo-files:
 - "this_is_optional"

 _images/yehua-0.png
/™ tmp — yh — 80x23

deno §

deno §

demo $ Let's make a python command line utility using yehua

demo $ The comand will be 'hello’ and it prints 'world"

deno §

deno $ yh

Yehua /" jehwa/ will walk you through creating a blank python package.

{

s AC to quit at any time.

project name [yehua-boilerplate]: ||

_images/yehua-1.png
oee tmp — yh — 80x23

$
$
$ Let's make a python comand line utility using yehua
$ The comand will be 'hello’ and it prints 'world'
s

$ yh

/'jehwa/ will walk you through creating a blank python package.
Press AC to quit at any time.

project name [yehua-boilerplate]: hello

github profile/organisation: chfw
copyright owner [C.W.]:

project type:

L[] 1. library

[/] 2. command line interface
cli executable name: hello

_images/yehua-hello.gif
demo $

deno $ yh

Yehua /" jetwa/ will walk you through creating a blank python package.
Press AC to quit at any time.

project name [yehua-boilerplate]: hello
description [Moremoban organisation's best template]: demonstrate yehua usage
License:

0] 1. mit

L] 2. newbsd

author: C.W.

contact enail: infofmorenoban.org N

github profile/organisation: chfw

copyright owner [C.W.1:

project type:

[1 1. library

[/] 2. command Line interface

cli executable name: hello

7 Files are generated under hello

7 Git repo initialized under hello and is ready to comit

ALl donel ! project hello is created.

In the ISumre. run moban to synchronize with the project template
demo $

_images/yehua-npm-usage.gif
.
s ity it
R ety s
See ‘rgm help 3
= el

s bttt
o=t

_images/yehua-7.png
demo $ cd hello/
demo $ vi_hello/main.py

demo § python setup.py install

running install

running bdist_egg

running egg_info

writing hello. egg-info/PKG-INFO

writing dependency_links to hello.egg~info/dependency_links. txt
writing entry points to hello.egg-info/entry_points. txt
writing top-level nanes to hello.egg-info/top_level. txt

_images/yehua-cookiecutter.gif
(deno $

demo §

demo $ Let's demonstrate Yehua's ability to use a cookiecutter template
demo §

deno $ yh https://github. con/audreyr/cookiecutter-pypackage.git]] 5

_images/yehua-story.png
Project Template

Awesome Template

Nth Generated Project

yehua generate '

>
| development starts

development continues

dd another awesome template

correction

Project Template

Awesome Template

Nth Generated Project

_images/yehua-usage.gif
LR R J /A tmp — -bash — 80x23

demo $

demo $
deno $ Let's make a python comnand line utility using yehua

demo $ The command will be 'hello’ and it prints 'world"
demo $

demo $ yhj

_images/coverage.png

 codecov
 codecov
 98%
 98%

_images/patreon.png
pPatreon

nav.xhtml

 Table of Contents

 		
 yehua - Let you focus on code, instead of setup scaffolding

 		
 Default use case: scaffolding a python package

 		
 Default yehua.yml file

 		
 configuration section

 		
 user question section

 		
 layout section

 		
 templates section

 		
 static section

 		
 Template files

 		
 Static files

 		
 After all actions

 		
 Custom use case: scaffolding a npm package

 		
 Evaluation

 		
 yehua.yml for npm package

 		
 configuration section

 		
 user questions section

 		
 templates section

 		
 static section

 		
 Enterprise use case: scaffolding all projects in your organisation

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

_static/plus.png

_static/push2github.png
new file: requirements.txt

new file: setup.py
new file: test.sh
new file: tests/requirements.txt

(yehua-venv) $ git commit -am ":sparkle: initial commit"
[master (root-commit) b84cleal :sparkle: initial commit
21 files changed, 615 insertions(+)

create mode 100644 .gitignore

create mode 100644 .moban.d/README.rst.jj2

create mode 100644 .moban.d/docs/source/conf.py.jj2
create mode 100644 .moban.d/requirements.txt.jj2
create mode 100644 .moban.d/setup.py.jj2

create mode 100644 .moban.d/test.sh.jj2

create mode 100644 .moban.d/tests/requirements.txt.jj2
create mode 100644 .moban.yml

create mode 100644 .travis.yml

create mode 100644 CHANGELOG.rst

create mode 100644 MANIFEST.in

create mode 100644 Makefile

create mode 100644 README.rst

create mode 100644 docs/source/conf.py

create mode 100644 hello.yml

create mode 100644 hello/__init__.py

create mode 100644 hello/main.py

create mode 100644 requirements.txt

create mode 100644 setup.py

create mode 100644 test.sh

create mode 100644 tests/requirements.txt

(yehua-venv) $ less README.rst

(yehua-venv) $ git remote add origin https://github.com/chfw/hello.git
(yehua-venv) $ git push -u origin master

_static/github.png
Owner Repository name

~ chfw~ [hello v
Great repository names are short and memorable. Need insg

Description (optional)

Hello world project generated by yehua

_static/minus.png

_static/up.png

_static/yehua-0.png
/™ tmp — yh — 80x23

deno §

deno §

demo $ Let's make a python command line utility using yehua

demo $ The comand will be 'hello’ and it prints 'world"

deno §

deno $ yh

Yehua /" jehwa/ will walk you through creating a blank python package.

{

s AC to quit at any time.

project name [yehua-boilerplate]: ||

_static/up-pressed.png

_static/yehua-2.png
{yehua-venv)
(yehua-venv)
(yehua-venv)
(yehua-venv)
(yehua-venv)
(yehua-venv) $ yehua
Yehua will walk you through creating a blank python package.
Press C to quit at any time.

Let's make a python command Line utility using yehua
The conmand will be ‘hello’ and it prints ‘world'
You will need to issue 'pip install yehua moban' beforehand

project nane: hello
description: denonstrate yehua usage
Uicense: HIT

author: your nane

contact enail: your email

github profile/organisation: your profile
Copyright owner: your org

project type?

1. library

2. command line interface

3. C externsion

(1,2,3): 2

cli executable name? hello

(yehua-venv) $ cd hello

(yehua-venv) $ §

_static/yehua-3.png
GesCription: demonstrate yesua wusage
Uicense: HIT

author: your nane

contact enail: your email

github profile/organisation: your profile

Copyright owner: your org

project type?

1. library

2. comnand line interface

3. C externsion

(1,2,3): 2

cli executable name? hello

(yehua-venv) $ cd hello

(yehua-venv) §

(yehua-venv)

(yehua-venv) § moban

Templating READHE.rst. §32 to README.rst

Templating setup.py.jj2 to setup.py

Templating requirements. txt.}j2 to requirements. txt
Templating tests/ requiréments. txt.}j2 to tests/requirenents. txt
Templating docs/source/conf.py.}12 to docs/source/conf.py
Templating test.sh.jj2 to test.sh

Templated 6 files.

(yehua-venv) § §

_static/yehua-1.png
oee tmp — yh — 80x23

$
$
$ Let's make a python comand line utility using yehua
$ The comand will be 'hello’ and it prints 'world'
s

$ yh

/'jehwa/ will walk you through creating a blank python package.
Press AC to quit at any time.

project name [yehua-boilerplate]: hello

github profile/organisation: chfw
copyright owner [C.W.]:

project type:

L[] 1. library

[/] 2. command line interface
cli executable name: hello

_static/yehua-6.png
3. Library

2. conmand line interface

3. C externsion

(1,2,3): 2

cli executable name? hello

(yehua-venv) $ cd hello

(yehua-venv)

(yehua-venv)

(yehua-venv) $ moban

Templating README.rst.jj2 to README.rst

Templating setup.py.jj2 to setup.py

Templating requirements.txt.jj2 to requirements.txt

Templating tests/requirements. txt.jj2 to tests/requirements. txt

Templating docs/source/conf.py.jj2 to docs/source/conf.py

Templating test.sh.jj2 to test.sh

Tenplated 6 files.

(yehua-venv) §

(yehua-venv)

(yehua-venv)

(yehua-venv)

(yehua-venv)
s
s
s

vi hello/main.py

(yehua-venv)
(yehua-venv)

(yehua-venv) $§ python setup.py install

_static/yehua-7.png
demo $ cd hello/
demo $ vi_hello/main.py

demo § python setup.py install

running install

running bdist_egg

running egg_info

writing hello. egg-info/PKG-INFO

writing dependency_links to hello.egg~info/dependency_links. txt
writing entry points to hello.egg-info/entry_points. txt
writing top-level nanes to hello.egg-info/top_level. txt

_static/yehua-4.png
author: your name
Contact enails your enail

github profile/organisation: your profile

Copyright owner: your org

project type

1 Vibrary

2. comnand line interface

5. C externsion

(1,2,3): 2

cli executable nane? hello

(yehua-venv) $ cd hello

(yehua-venv) §

(yehus-veny) §

(yehua-venv) § moban

Tenplating READHE, rat. 132 to READHE. rst

Templating setup.py.jj2 to setup.py

Templating requirenents. txt,1)2 to. requirements. txt
Templating tests/requirenents. cxt.j32 to tests/requirenents. txt
Tenplating docs/source/cont.py. 12 to docs/source)cont .y
Tenplating test.sh.1j2 o test.sh

Tenplated 6 files

(yehus-veny) s

(yehus-veny) §

(Yehua-venv) § vi hello/main. pyl

_static/yehua-5.png
printfvortd’)

det maint)

_static/yehua-story.png
Project Template

Awesome Template

Nth Generated Project

yehua generate '

>
| development starts

development continues

dd another awesome template

correction

Project Template

Awesome Template

Nth Generated Project

_static/yehua-cookiecutter.gif
(deno $

demo §

demo $ Let's demonstrate Yehua's ability to use a cookiecutter template
demo §

deno $ yh https://github. con/audreyr/cookiecutter-pypackage.git]] 5

_static/yehua-hello.gif
demo $

deno $ yh

Yehua /" jetwa/ will walk you through creating a blank python package.
Press AC to quit at any time.

project name [yehua-boilerplate]: hello
description [Moremoban organisation's best template]: demonstrate yehua usage
License:

0] 1. mit

L] 2. newbsd

author: C.W.

contact enail: infofmorenoban.org N

github profile/organisation: chfw

copyright owner [C.W.1:

project type:

[1 1. library

[/] 2. command Line interface

cli executable name: hello

7 Files are generated under hello

7 Git repo initialized under hello and is ready to comit

ALl donel ! project hello is created.

In the ISumre. run moban to synchronize with the project template
demo $

