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Introduction
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yehua /’jɛhwa/ is yet another a project template tool for an organisation. It creates a project skeleton, S
from the default project template, T,  of an organisation. moban [https://github.com/moremoban/moban], the other
tool of moremoban organisation, keeps S in synchronisation with T forever. This
use case is what we called: continuous templating.
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Cookiecutter users

Yes, we now support cookiecutter templates. It has been requested since 2018
Europython. Simply there is tons of cookiecutter templates out there.

[image: _images/yehua-cookiecutter.gif]
What you do is to replace ‘cookiecutter’ with ‘yh’:

$ pip install yehua[cookiecutter]
$ yh gh:audreyr/cookiecutter-pypackage





And what moremoban promise is, whenever your source template changes, you
can synchronize them any time with another moremoban’s command ‘moban’:

$ moban





Yes, you need a separate command, which replaces your effort to synchronize
the upstream templates all the time.




What’s different with Yehua

When the scope is a single project, yehua is no different to cookiecutter [https://github.com/cookiecutter/cookiecutter] and
PyScaffold [https://github.com/pyscaffold/pyscaffold]. It will create a project skeleton from pypi-mobans [https://github.com/moremobans/pypi-mobans], other templates such
as cookiecutter templates, yehua mobans.

When the scope is all projects within an organisation, yehua helps tackle
information fragmentation problem, because all new projects after its creation,
are still in synchronisation with T. For example, removing python 2.7 test
in your travis file, can be done either manually by hand or automatically via
moban [https://github.com/moremoban/moban]. What’s the difference? The latter is faster and typo-free option. Here is
an example [https://github.com/moremoban/yehua/blob/dev/.github/workflows/moban-update.yml].

PyScaffold [https://github.com/pyscaffold/pyscaffold] version 3 has rolled out ‘–update’ option, recognizing the organisational
need of continous templating. Why do not yehua join PyScaffold [https://github.com/pyscaffold/pyscaffold]? Well,
moremoban organisation started with ‘–update’ at the start so our architecture
and vision are closer to that of cookiecutter [https://github.com/cookiecutter/cookiecutter]:


	we do not want to limit ourselves in pythonsphere. We wanted to serve all
IT projects. In our mind, they are all about text templating.


	we split the tool and the templates, serving the previous statement.
People can create npm package template and use yehua+moban for continuous templating.
Here are a list of examples:





	pypkg-mobans in pyecharts project [https://github.com/pyecharts/pypkg-mobans]


	echarts-js-mobans in echarts-map project [https://github.com/echarts-maps/echarts-js-mobans]







Installation

You can install yehua via pip:

$ pip install yehua





or clone it and install it:

$ git clone https://github.com/moremoban/yehua.git
$ cd yehua
$ python setup.py install








Usage

Simply type in and you are taken care of:

$ yh





It will use pypi-mobans-pkg by default and if it is not installed, it will
install latest one. Then pypi-mobans-pkg takes over and will do
[these](https://github.com/moremoban/pypi-mobans/blob/dev/yehua.yml)
for you:


	Consult you on your project static information which can update as
many as you want to.


	Create the Python package folder structure


	Initialize the package as git project




You will simply need to commit it after you will have reviewed the
generated files.




Tutorial

Let’s make a python command line utility using yehua. The command
will be hello and it prints world.


Step 1 Let’s launch yehua

[image: slide1]




Step 2 Fill-in the meta data for your project

[image: slide2]

At the end, yehua generates a folder named ‘hello’, which contains [all necessary
files](https://github.com/moremoban/pypi-mobans).




Step 3 Start coding

[image: _images/yehua-hello.gif]
In above animation, we write up the actual code in hello/main.py

def main():
    print('world')





Why is it enough? yehua generates a command utility python and
it has pre-wired to invoke hello.main.main() function. You
can find it out in setup.py.




Step 4 Install it

Now all is done. Let’s install it

[image: slide7]

You can now run hello at your command line.




Step 5 push to github

Suppose you are happy with everything. Please do the following to
push it to your github:

$ git commit -am ":sparkle: initial commit"





Then create your project repository in github and do these to push it out:

$ git remote add origin https://github.com/moremoban/hello.git
$ git push origin master





You can find the hello project [https://github.com/moremoban/hello] on github.




Step 7 enable travis

The generated project already has .travis.yml file. What you
will need to do is to register with travis.org if you have not
done so. And then go to travis and activate your project.






Background

The original problem I was trying to solve is: I would like to place
common paragraphs in the documentation of my projects in a central
place (pyexcel-mobans), and all projects could reference it dynamically
so that when those common paragraphs get updated, the updates can be
easily propagated to all relevant projects. The derived problem is:
what can I do to a new project? I found myself doing a lot of
copy-and-paste a lot, which lead to the creation of “yehua”. Later,
John Vandenberg, an active member of coala, suggested extracting the
generic sets of pyexcel-mobans to form pypi-mobans, so that
a vanilla python package can be created. Why not cookiecutter?
Well, I have not heard of it at the time of creation. But it turns out
that this project started to pave the way to be the cookiecutter
for organisations.

Why to choose “yehua”? Here is the little story [https://github.com/moremoban/yehua/issues/5#issuecomment-317218010] behind the
choice of name. And this music video [https://www.youtube.com/watch?v=_JFTOQ6F1-M&frags=pl%2Cwn] would help bridge the
cultural gap between you and me.
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Default use case: scaffolding a python package

yehua reads a configuration file named yehua.yml which then instruct **yehua
to ask questions to collect project specific variables, and create the file
structures.

It takes a yehua file from command line option, or YEHUA_FILE in the environment
variable. If none is found, it resorts to the default yehua.yml file included
in the package. And the default yehua.yml create a blank python package.


Default yehua.yml file

Let us go through the default yehua file. And then talk about the customization
in the next chapter


configuration section

yehua expects two set of files: templates and static files. configuration
section tells where they are relative to yehua.yml file.

In the default use case, the templates are located in yehua/resources/templates
and the static files are located in yehua/resources/static.

The files in the static folder will not be templated and will be copied across.

As a rule of thumb, if your file needs user input, please place it in templates
folder. Otherwise, please place your files in static folder, which is copied
across.




user question section

yehua will then ask a list of questions. The quoted lines are prompted to
the end user and the answers are given to the variable names on the left hand
side of semi-colon. Here is a simple format:

- holding_variable_name_for_the_answer: "What is most intuitive question for the variable?"





Then “holding_variable_name_for_the_answer” can be used in your template files.




layout section

layout section outlines the folder structure of the resulting project folder.
yehua will create the folder layout before generating any outputs.

In this case, a default python package will have tests, docs and .moban.d at
its first level. yehua would always create a sub folder named after
project_name.




templates section

The files in this section follows this spec:



	templated_target_file: template.file.in.templates.folder







As you can see, yehua would expand project_name for you.




static section

File in this section is simply copied over. Here is the spec:

- relative_file_path: relative_static_file_path_in_static_folder










Template files

Let’s examine the beginning of project.yml in templates folder.


	project_name


	organisation


	author


	contact


	company




are unknown to yehua and only the user knows the answer. Hence, it brings
us to the next section: user questions




Static files

The static files in yehua/resources/static are copied over by yehua according to
the instruction file.




After all actions

The possible extra actions is git-repo-files where you can name the files
to be added to a git repo. Here is a list of default files to be added to
the file repo:







          

      

      

    

  

    
      
          
            
  
Custom use case: scaffolding a npm package

As mentioned in previous section, yehua would take a yehua.yml from command
line options. This section walk you through creating a npm package, non-python
package.

If you are familiar with npm, you can try and compare with yehua:

$ npm init






Evaluation

Please first checkout yehua repository so that you will have the access to
example directory. Then make sure you have yehua installed.

[image: _images/yehua-npm-usage.gif]



yehua.yml for npm package

Let us go through the variant yehua file.


configuration section

configuration:
  template_path: .
  static_path: .
questions:





the current directory where yehua.yml file is, is configured as the folder for
templates and static files.




user questions section

questions:
  - project_name: "name:"
  - version: "version:"
  - description: "description:"
  - entry_point: "entry point:"
  - test_command: "test command:"
  - git_repo: "git repository:"
  - keywords: "keywords:"
  - author: "author:"
  - license: "license:"





the questions here are prompted to collect user inputs.




templates section

templates:
  - package.json: package.json.jj2





Now the variables are used in template package.json.jj2 into package.json.




static section

static:
  - index.js: index.js





Now, yehua simply copies index.js to target package folder.









          

      

      

    

  

    
      
          
            
  
Enterprise use case: scaffolding all projects in your organisation

Previous example shows that you can write up your own yehua.yml and supporting
templates and static files and yehua creates the scaffolding for you.

Now in an enterprise context, you as the team lead or the architect would like
to propagate the best practices to all new projects. What you can do is to
make the yehua.yml and its files into repository. And then you could set:

$ export YEHUA_FILE=/location/to/the/cloned/yehua/repo/yehua.yml





Since then, yehua would always use that yehua file for scaffolding.

if you want to try it now, you could do this:

$ export YEHUA_FILE=/location/to/yehua/repo/examples/npm-init/yehua.yml
$ yehua
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Example yehua file

Here is the sample startup file:

configuration:
      - template_path: ./relative_path_to_this_file
      - static_path: ./relative_path_to_this_file
questions:
  - simple_keyword: "Simple Question?"
  - complex_question:
    - question: "The actual question?"
      "1. Answser":
        - follow_up_keyword: "Follow up question?"
      "2. Answer": "N/A"
mobans:
  - 'mobans': 'this is optional'
layout:
  - tests
  - docs:
    - source
  - .moban.d:
    - tests
    - docs:
      - source
templates:
  - "{{project_name}}.yml": project.yml
  - .moban.yml: .moban.yml
static:
  - ".moban.d/README.rst": "README.rst"
  - "{{project_src}}/__init__.py": __init__.py.jj2
post-moban:
  git-repo-files:
  - "this_is_optional"
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